Skip to main content

Real time satellite tracking of your journeys - how does it work?

I'm back in Oslo after my 25 days ski trip across Nordryggen in Norway. It was a great journey, and I would highly recommend doing all or parts of it if you enjoy cross-country skiing. Just be prepared for shifting weather conditions.
The goal of the trip was also to test my solution for real time satellite tracking, explained in several of my previous blog posts. It worked out really well, and people were able to follow along in the comfort of their sofa.


I fastened a Spot Satellite Messenger to the top of my backpack, and left the device in tracking mode while skiing. The device sent my current position every 5 minutes, allowing me to update the map without any mobile coverage. When we arrived at a mountain hut, I pressed the OK button to set up a bed. I also programmed a button to show a snow cave, in case we wouldn't reach a hut. Luckily we didn't have to use it :-)

My map and elevation plot of the 25 days ski trip across Nordryggen. Most of the trip is above tree line, and there are only 5 road crossings in total. 

The SPOT messenger only sends my time and position, so I had to create a web service to retrieve extra information about each location. I'm using a service from the Norwegian Mapping Authority
 to retrieve the altitude, nearest place name and the terrain type. Earlier this winter, I experienced that the service did't return any altitude if I was skiing on lakes, so I'm using the Google Elevation API to avoid gaps in the elevation profile.

By knowing the time and location, I could create an automatic service to obtain more information to enrich the map. In addition to elevation and place name, I've added a weather report.  The image show Bjordalsbu, the highest lying hut on the route 1586 m, which we visited in a strong breeze. 

While skiing, I used Instagram to post photos that would instantly show on the map as well. This required mobile coverage, which is sparse in the mountains. After the trip, I synced my camera photos with my GPS track to be able to show them along the route.

Click "Bilder" in the top menu to see the photos along the route. 

A few of my photos:

Eidsbugarden in Jotunheimen. 

Iungsdalshytta in Skarveimen. 

Taumevatn in Ryfylkeheiane.

Gaukhei in Setesdalsheiane. 

End of trip - and the snow - in Ljosland. 
More photos in my Google+ album.

Comments

Unknown said…
Awesome in any way!
Anonymous said…
Hi. That's a really nice article and a good inspiration. Just one little suggestion for improvement: Could you perhaps use resampled images for your newsletter? I just opened your email and got an alert from 3GWatchdog that my daily quota is already exhausted after opening the first email today ;)
had a look at the email and blogpost and realized that the images are just resized on the client side but not resampled. cheers
nat said…
Beautiful project! Thank you for the post.
This summer I will sail around Åland archipelago and will use a raspberry pi (with a camera module) & GPS receiver & Twitter API. I might also get some inspirations from your work.

Popular posts from this blog

Creating a WebGL Earth with three.js

This blog post will show you how to create a WebGL Earth with three.js , a great JavaScript library which helps you to go 3D in the browser. I was surprised how easy it seemed when reading a blog post  by Jerome Etienne . So I decided to give it a try using earth textures  from one of my favourite cartographers, Tom Patterson . WebGL is a JavaScript API for rendering interactive 3D graphics in modern web browsers without the use of plug-ins. Three.js is built on top of WebGL, and allows you to create complex 3D scenes with a few lines of JavaScript. If your browser supports WebGL you should see a rotating Earth below: [ Fullscreen ] To be able to display something with three.js, you need three things: a scene, a camera and a renderer. var width  = window.innerWidth,     height = window.innerHeight; var scene = new THREE.Scene(); var camera = new THREE.PerspectiveCamera(45, width / height, 0.01, 1000); camera.position.z = 1.5; var rende...

Thematic Mapping Engine

It's time to introduce the Thematic Mapping Engine (TME). In my previous blog posts, I've shown various techniques of how geobrowsers can be used for thematic mapping. The goal has been to explore the possibilites and to make these techniques available to a wider audience. The Tematic Mapping Engine provides an easy-to-use web interface where you can create visually appealing maps on-the-fly. So far only prism maps are supported, but other thematic mapping techniques will be added in the upcoming weeks. The engine returns a KMZ file that you can open in Google Earth or download to your computer. My primary data source is UNdata . The above visualisation is generated by TME ( download KMZ ) and shows child mortaility in the world ( UNdata ). The Thematic Mapping Engine is also an example of what you can achieve with open source tools and datasets in the public domain: A world border dataset is loaded into a MySQL database . The same database contains tables with statistics ...

Creating 3D terrains with Cesium

Previously, I’ve used three.js to create 3D terrain maps in the browser ( 1 , 2 , 3 , 4 , 5 , 6 ). It worked great for smaller areas, but three.js doesn’t have built-in support for tiling and advanced LOD algorithms needed to render large terrains. So I decided to take Cesium for a spin. Cesium is a JavaScript library for creating 3D globes and 2D maps in the browser without a plugin. Like three.js, it uses WebGL for hardware-accelerated graphics. Cesium allows you to add your own terrain data, and this blog post will show you how. Impressed by the terrain rendering in @CesiumJS - with a 10m elevation model for Norway! Farewell Google Earth. pic.twitter.com/RQKvfu2hBb — Bjørn Sandvik (@thematicmapping) October 4, 2014 Compared to  the dying Google Earth plugin , it's quite complicated to get started with Cesium. The source code is well documented and the live coding Sandcastle is great, but there is a lack of tutorials  and my development slows down when ...