It's one obvious thing missing from my maps of New Zealand: map labels. This blog post will show you how to create a transparant layer with map labels with TileMill, which can be added as an map overlay in Leaflet or other mapping libraries.
To create map labels, you need a point dataset containg at least a position and the label text. As we'll see later, information about type of place, importance etc. will also be useful. For my New Zealand maps, I'm using a dataset from LINZ Data Service: NZ Geographic Names (Topo, 1:500k)
I started by using QGIS to convert the shapefile into SQLite database (by right-clicking on the layer name in QGIS and select “Save as…”). This allows us run SQL queries against the data in TileMill. The dataset includes three attributes or columns, - name, size and a code describing the type of place:
I'm opening the SQLite file in TileMill:
I'm using this SQL query to load the data from the SQLite database:
SELECT * FROM nz_labels ORDER BY size DESC
This will sort the labels after size, in descending order. I'm assuming that larger size means more important labels, and this will instruct TileMill to start with the most important labels (there is not enough space to show all labels on all zoom levels). Remember also to include the SRS projection string for the data source (NZTM2000):
+proj=tmerc +lat_0=0 +lon_0=173 +k=0.9996 +x_0=1600000 +y_0=10000000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs
CartoCSS includes a provides several ways to style map labels or text, and I haven't got the time to explore all the possibilities. This is the my CartoCSS for zoom level 5-7:
I start by defining the fonts I'm going to use. It's a convention in cartography to label water features (lakes, sea, rivers) in serif italic faces, but small serif fonts on screen can be hard to read.. New high resolution screens, like Apple's Retina display, will probably make serif fonts more popular for web maps. You can use TypeBrewer to test various font combinations.
I'm starting with the places marked as "METR" (probably metropolitan areas, although using this term in New Zealand sounds a bit strange...). I'm aligning the labels (text-horizontal-alignment) to place them over the ocean, so they're not obscuring the map. A halo is added around the labels (text-halo-fill / text-halo-radius) to make the text visible on top of various basemaps.
Auckland, Wellington, Christchurch and Dunedin are the only labels shown on zoom level 5 (in the Web Mercator projection). I'm then adding towns on zoom level 6, and populated places on zoom level 7.
The minimum distance between each label (text-min-distance) is 30 pixels to avoid label collisions. This means that many towns or populated places will not be drawn because it's not enough space. More labels will be revealed as you zoom in. Although I sorted the features after the size attribute, it's probably not enough to make a good selection of labels for each zoom level. I'm sorry if I left out your town! :-)
I'm continuing like this until zoom level 12, gradually adding more labels for features like suburbs, lakes, mountains etc.
The map labels were exported as a separate map using the MBTiles format, and added to my Leaflet map as a map overlay. This is the result:
Fullscreen map
To create map labels, you need a point dataset containg at least a position and the label text. As we'll see later, information about type of place, importance etc. will also be useful. For my New Zealand maps, I'm using a dataset from LINZ Data Service: NZ Geographic Names (Topo, 1:500k)
I started by using QGIS to convert the shapefile into SQLite database (by right-clicking on the layer name in QGIS and select “Save as…”). This allows us run SQL queries against the data in TileMill. The dataset includes three attributes or columns, - name, size and a code describing the type of place:
I'm opening the SQLite file in TileMill:
I'm using this SQL query to load the data from the SQLite database:
SELECT * FROM nz_labels ORDER BY size DESC
This will sort the labels after size, in descending order. I'm assuming that larger size means more important labels, and this will instruct TileMill to start with the most important labels (there is not enough space to show all labels on all zoom levels). Remember also to include the SRS projection string for the data source (NZTM2000):
+proj=tmerc +lat_0=0 +lon_0=173 +k=0.9996 +x_0=1600000 +y_0=10000000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs
CartoCSS includes a provides several ways to style map labels or text, and I haven't got the time to explore all the possibilities. This is the my CartoCSS for zoom level 5-7:
I start by defining the fonts I'm going to use. It's a convention in cartography to label water features (lakes, sea, rivers) in serif italic faces, but small serif fonts on screen can be hard to read.. New high resolution screens, like Apple's Retina display, will probably make serif fonts more popular for web maps. You can use TypeBrewer to test various font combinations.
I'm starting with the places marked as "METR" (probably metropolitan areas, although using this term in New Zealand sounds a bit strange...). I'm aligning the labels (text-horizontal-alignment) to place them over the ocean, so they're not obscuring the map. A halo is added around the labels (text-halo-fill / text-halo-radius) to make the text visible on top of various basemaps.
Auckland, Wellington, Christchurch and Dunedin are the only labels shown on zoom level 5 (in the Web Mercator projection). I'm then adding towns on zoom level 6, and populated places on zoom level 7.
Labels shown on zoom level 6. |
The minimum distance between each label (text-min-distance) is 30 pixels to avoid label collisions. This means that many towns or populated places will not be drawn because it's not enough space. More labels will be revealed as you zoom in. Although I sorted the features after the size attribute, it's probably not enough to make a good selection of labels for each zoom level. I'm sorry if I left out your town! :-)
I'm continuing like this until zoom level 12, gradually adding more labels for features like suburbs, lakes, mountains etc.
The map labels were exported as a separate map using the MBTiles format, and added to my Leaflet map as a map overlay. This is the result:
Fullscreen map
No comments:
Post a Comment