Skip to main content

Mapping New Zealand: Editing and merging shapefiles with QGIS

The data you want to map is not always in the format you need. I was looking for a dataset containing polygons for all land areas (islands) in New Zealand (1:500,000 scale), but I couldn’t find it on the LINZ Data Portal. So I tried to create it myself from the data I found:

Update Oct. 8th 2012: LINZ has added new polygon datasets for all land areas in New Zealand (see comments below), so you don't have to do the job described in this blog post. The techniques for editing and merging shapefiles are still valid.

NZ coastlines (Topo, 1:500k)
This dataset (nz-coastlines-topo-1500k.shp) contains coastlines for North Island, South Island and Stewart Island, - but not for offshore islands (most notably the Chatham Islands) and the smaller islands around the coast. The coastlines are represented as lines, while I need the data as island polygons. This is how I converted the lines into polygons with QGIS:

Vector -> Geometry Tools -> Lines to polygons


I named the new dataset "nz-main-island-polygons.shp".

(I wasn't able to do the same with the 1:250,000 version of the coastlines dataset, as the coastlines are divided into multiple line segments that didn’t merge in the correct order. Please let me know if anyone are able to convert this dataset into polygons! At 1:50,000 scale, LINZ is providing a dataset containing polygons for all islands.)

I’ve not found data for the offshore islands at 1:500,000 scale, but the smaller islands around the coast are available:

NZ island polygons (Topo, 1:500k)
This dataset (nz-island-polygons-topo-1.shp) also contains inland islands (islands in lakes), which I don’t want. I made a copy of this dataset named "nz-coast-island-polygons.shp" and removed the inland islands manually with "Select features by freehand" in QGIS.


I now want to merge the two shapefiles into one. This can easily be achieved in QGIS:

Vector -> Data Management Tools -> Merge shapefiles to one


We now got a polygon shapefile (nz-land-polygons.shp) containing all land areas of New Zealand, except the missing offshore islands.


Lastly, I also need this dataset in the Web Mercator projection (for my next blog post). I’m using ogr2ogr:

ogr2ogr -s_srs EPSG:2193 -t_srs EPSG:3785 nz-land-polygons-webmerc.shp nz-land-polygons.shp

(Written on a rainy day at the Hopewell lodge in Marlborough Sounds. A higly recommended place to releax a few days!)



Comments

Jeremy Palmer said…
Hi Bjørn,

Thanks for your great blogging. LINZ is currently working on creating topo250 and topo500 polygon layers as I speak. I know it's a little too late for you, but it should mean other users won't have to go through the polygonise process

I’ll post back here once we release the datasets on http://data.linz.govt.nz

Cheers,
Jeremy
Bjørn Sandvik said…
Thanks Jeremy!

Nice if you post back here once you release the datasets. I'm in New Zealand for another month or two, so I might even use it for my experiments.

It's great that you provide all these data for free!

Cheers,
Bjørn
Jeremy Palmer said…
Hi Bjørn,

We've updated the 50k combined coastline layer with the new data. It's on LDS here:
http://data.linz.govt.nz/layer/1153-nz-coastlines-and-islands-polygons-topo-150k

LINZ has also put up 250k and 500k versions:
http://data.linz.govt.nz/layer/1559-nz-coastlines-and-islands-polygons-topo-1250k/
http://data.linz.govt.nz/layer/1560-nz-coastlines-and-islands-polygons-topo-1500k/

Enjoy!

Cheers,
Jeremy
Bjørn Sandvik said…
Thanks Jeremy,

I've alredy tested the 250k version, at it works perfectly!

Popular posts from this blog

Creating a WebGL Earth with three.js

This blog post will show you how to create a WebGL Earth with three.js , a great JavaScript library which helps you to go 3D in the browser. I was surprised how easy it seemed when reading a blog post  by Jerome Etienne . So I decided to give it a try using earth textures  from one of my favourite cartographers, Tom Patterson . WebGL is a JavaScript API for rendering interactive 3D graphics in modern web browsers without the use of plug-ins. Three.js is built on top of WebGL, and allows you to create complex 3D scenes with a few lines of JavaScript. If your browser supports WebGL you should see a rotating Earth below: [ Fullscreen ] To be able to display something with three.js, you need three things: a scene, a camera and a renderer. var width  = window.innerWidth,     height = window.innerHeight; var scene = new THREE.Scene(); var camera = new THREE.PerspectiveCamera(45, width / height, 0.01, 1000); camera.position.z = 1.5; var rende...

Thematic Mapping Engine

It's time to introduce the Thematic Mapping Engine (TME). In my previous blog posts, I've shown various techniques of how geobrowsers can be used for thematic mapping. The goal has been to explore the possibilites and to make these techniques available to a wider audience. The Tematic Mapping Engine provides an easy-to-use web interface where you can create visually appealing maps on-the-fly. So far only prism maps are supported, but other thematic mapping techniques will be added in the upcoming weeks. The engine returns a KMZ file that you can open in Google Earth or download to your computer. My primary data source is UNdata . The above visualisation is generated by TME ( download KMZ ) and shows child mortaility in the world ( UNdata ). The Thematic Mapping Engine is also an example of what you can achieve with open source tools and datasets in the public domain: A world border dataset is loaded into a MySQL database . The same database contains tables with statistics ...

Creating 3D terrains with Cesium

Previously, I’ve used three.js to create 3D terrain maps in the browser ( 1 , 2 , 3 , 4 , 5 , 6 ). It worked great for smaller areas, but three.js doesn’t have built-in support for tiling and advanced LOD algorithms needed to render large terrains. So I decided to take Cesium for a spin. Cesium is a JavaScript library for creating 3D globes and 2D maps in the browser without a plugin. Like three.js, it uses WebGL for hardware-accelerated graphics. Cesium allows you to add your own terrain data, and this blog post will show you how. Impressed by the terrain rendering in @CesiumJS - with a 10m elevation model for Norway! Farewell Google Earth. pic.twitter.com/RQKvfu2hBb — Bjørn Sandvik (@thematicmapping) October 4, 2014 Compared to  the dying Google Earth plugin , it's quite complicated to get started with Cesium. The source code is well documented and the live coding Sandcastle is great, but there is a lack of tutorials  and my development slows down when ...